
Cinématique : Equations du mouvement

SYNTHESE

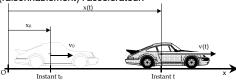
I. Mouvement de translation rectiligne uniforme

Étudions une voiture qui roule à vitesse constante sur une autoroute complètement rectiligne.

Soient:

to: instant initial (en s);

x₀: le déplacement initial (en m), à t=t₀;


v₀: la vitesse initiale (en m/s);

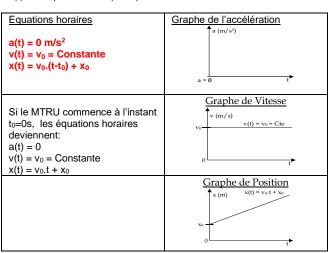
x(t): le déplacement x (en m) à l'instant t.

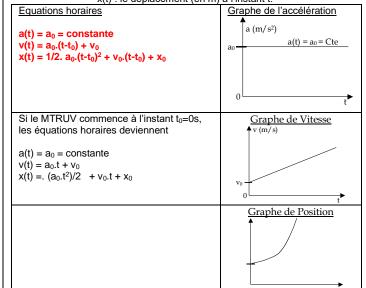
t₀, x₀ et v₀ sont appelées les **conditions initiales** du mouvement.

II. Mouvement de translation rectiligne uniformément varié

Reprenons notre même véhicule. Le conducteur décide d'écraser (raisonnablement) l'accélérateur.

Soient:


to: instant initial (en s);


x₀: le déplacement initial, à t=t₀;

a₀: l'accélération initiale (en m/s²);

v₀: la vitesse initiale (en m/s);

x(t) : le déplacement (en m) à l'instant t.

III. Mouvement de rotation uniforme

Le mouvement de rotation d'un solide S est uniforme si la vitesse angulaire w d'un point M de S est constante.

On en déduit les équations du mouvement de ce point M :

Accélération angulaire $\alpha(t) = 0 \text{ rad/s}^2$

 $\mbox{Vitesse angulaire} \qquad \qquad \mbox{$\omega(t) = \omega_0 = Constante} \label{eq:constante}$

Abscisse angulaire $\theta(t) = \omega \cdot (t-t_0) + \theta_0$

avec θ_0 : abscisse angulaire à l'instant t=0

 $\theta(t)$: abscisse angulaire à l'instant t

Notations équivalentes :

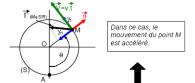
Accélération angulaire : $\alpha(t) = \theta$ ''(t), Vitesse angulaire : $\omega(t) = \theta$ '(t)

Abscisse angulaire : $\theta(t)$

IV. Mouvement de rotation uniformément varié

Le mouvement de rotation d'un solide S est uniformément varié si l'accélération angulaire $\alpha(t)$ d'un point M de S est constante.

On en déduit les équations du mouvement de ce point M :


Accélération angulaire $\alpha(t) = \alpha_0 = Constante$

Vitesse angulaire $\omega(t) = \alpha_0 \cdot (t-t_0) + \omega_0$

Abscisse angulaire $\theta(t) = \frac{1}{2} .\alpha_0.(t-t_0)^2 + \omega_0.(t-t_0) + \theta_0$

Avec ω_0 : vitesse angulaire à l'instant t=0

 θ_0 : abscisse angulaire à l'instant t=0

Le mouvement est accéléré si la composante tangentielle de l'accélération et la vitesse v sont dans le même sens. Le mouvement est freiné dans le cas contraire