

M5 : RdM (Résistance des Matériaux)

Cisaillement

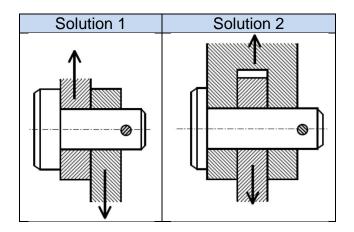
TD

1. Articulation

Vous devez effectuer la maintenance corrective sur une articulation. Pour réaliser cette liaison, vous avez le choix entre 2 solutions technologiques :

Données :

Coefficient de sécurité : s = 3


Matériaux de l'axe : 9SMn36 (Re=420Mpa)

Intensité des forces : 15 000N Diamètre de l'axe : 12mm

Reg = 0.7.Re

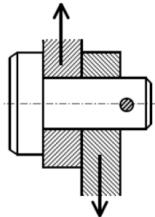
Q1 : Repasser en rouge les sections cisaillées des

axes sur les schémas ci dessus.

	Solution 1	Solution 2
Q2 : Compléter le tableau ci dessous :		Columbin 2
Re du matériau		
Reg du matériau		
Rpg		
Intensité force		
Nombre de sections cisaillées		
Intensité de l'effort tranchant T		
Aire d'une section cisaillée		
Contrainte ζ d'une section		
Conclusion		

M5: RdM (Résistance des Matériaux)

Cisaillement

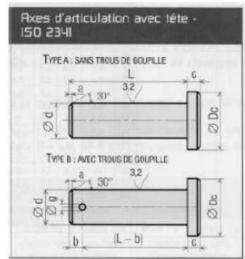

TD

2. Exercice 2

Vous devez déterminer le diamètre de l'axe de cette liaison pour un effort de 10000N.

L'axe est en S255, le coefficient de sécurité est de 3.

Reg = 0.5.Re



Ø=mm

« ISO 2340 ET 2341 »													
Ø d h11	L mm	a mm	b mm	g H13	Ø Dc h14	c mm	Ø d h11	L mm	a mm	b mm	g H13	Ø Dc h14	c mm
3	6 à 30	1	1,6	0,8	5	1	12	24 à 120	3	5,5	3,2	20	4
4	8 à 40	1	2,2	1	6	1	14	28 à 140	3	6	4	22	4
5	10 à 50	2	2,9	1,2	8	1,6	16	32 à 160	3	6	4	25	4,5
6	12 à 60	2	3,2	1,6	10	2	18	35 à 180	3	7	5	28	5
8	16 à 80	2	3,5	2	14	3	20	40 à 200	4	8	5	30	5
10	20 à 100	2	4,5	3,2	18	4	22	45 à 200	4	8	5	33	5,5

Q1 : Déterminer le nombre de sections cisaillées :
Q2 : Représenter la section cisaillée sur le schéma ci dessus.
Q3 : Déterminer l'effort tranchant T :
Q4 : Déterminer la résistance élastique « Re » pour ce matériau : Re =Mpa
Q5 : Calculer la résistance élastique au cisaillement pour ce matériau : Reg =Mpa
Q6 : Calculer la résistance pratique au cisaillement pour ce matériau : Rpg =Mpa
Q7 : Calculer l'aire minimum de la section cisaillée :
S=mm²
Q8 : Calculer le diamètre minimum de la section cisaillée :

Q9 : Choisir un diamètre normalisé dans le tableau ci dessus :

