

Donc d = m

M2 : Cinématique

Equations du mouvement

TD

Freinage sur Autoroute

Mouvement de translation rectilique uniformément varié :

Accélération a = constanteVitesse $V = a \cdot t + Vo$

Déplacement $X = a \cdot t^2 / 2 + Vo \cdot t + Xo$

a : accélération
Vo : vitesse initiale

Xo : position initiale t : durée

Longueur ligne blanche : 39 mètres

Intervalle entre les lignes : 13 mètres

<u>INTRODUCTION :</u> On considère que le temps de réaction pour appuyer sur la pédale de frein est de l'ordre de 1s.
Q1 : Calculer la distance "d1" parcourue par un véhicule roulant à 130 km/h en 1s.
Donc d1 = m
On considère que le temps nécessaire à un véhicule roulant à 130 km/h pour s'arrêter est de 5s. La décélération est considérée comme constante.
Q2 : Calculer la valeur "a" de la décélération d'un véhicule passant de 130km/h à 0km/h en 5s
Donc a = m/s²
Q3 : Calculer la distance parcourue "d2" par un véhicule roulant à 130km/h pour s'arrêter (ne pas tenir compt du temps de réaction).
Donc d2 = m
Q4 : Calculer la distance "d" que parcourt un véhicule roulant à 130km/h pour s'arrêter en tenant compte d temps de réaction.

M2: Cinématique

Equations du mouvement

TD

1er cas de figure

Vous respectez les distances de sécurité (vous êtes à 2 "traits" du véhicule devant vous, vous roulez à 130km/h, le véhicule devant vous est stoppé "net" en raison d'un choc.

On prendra a = -7.2 m/s²

Déterminer la vitesse à laquelle vous rentrez en contact avec celui ci. Vous prendrez en compte le temps de réaction.

Rappel:

Propriété : Soit Δ le discriminant du trinôme $ax^2 + bx + c$.

- Si Δ < 0 : L'équation $ax^2 + bx + c = 0$ n'a pas de solution réelle.
- Si $\Delta = 0$: L'équation $ax^2 + bx + c = 0$ a une unique solution : $x_0 = -\frac{b}{2a}$.
- Si $\Delta > 0$: L'équation $ax^2 + bx + c = 0$ a deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

2ème cas de figure

Vous ne respectez pas les distances de sécurité (vous êtes à 1 "traits" du véhicule devant vous), vous roulez à 130km/h, le véhicule devant vous est stoppé "net" en raison d'un choc.

On prendra $a = -7.2 \text{ m/s}^2$

Déterminer la vitesse à laquelle vous rentrez en contact avec celui ci.

Vous prendrez en compte le temps de réaction.

Rappel:

Propriété : Soit Δ le discriminant du trinôme $ax^2 + bx + c$.

- Si Δ < 0 : L'équation $ax^2 + bx + c = 0$ n'a pas de solution réelle.
- Si $\Delta = 0$: L'équation $ax^2 + bx + c = 0$ a une unique solution : $x_0 = -\frac{b}{2a}$.
- Si Δ > 0 : L'équation $ax^2 + bx + c = 0$ a deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.